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TIME CRITERIA OF EXPLOSIVE FRACTURE

Yu. I. Fadeenko UDC 539.375

The total fracture of a solid in a given section presupposes the satisfaction of the following time criteria;
1) the fracture preparation criterion (damage accumulation, formation of embryonic cracks); 2) the integral
crack coalescence criterion, based on the nonstationary crack growth equation.

In solving specific problems it may prove convenient to consider separately the initial (essentially non-
stationary) phase of acceleration of cracks initially at rest and the subsequent phase of quasistationary growth;
in this case the second of the above-mentioned criteria breaks down into two separate time conditions. The
starting relations may also include Griffith's criterion, i.e., a differential crack growth condition requiring
that the energy-release rate be not less than the work-absorption rate, Generally speaking, Griffith's criterion
should be obtained from the crack growth equation by equating the growth rate to zero.

Thus, the total fracture time 7 can be represented as the sum of the fracture preparation time 7,, the
duration of the transient process T3, and the period of quasistationary growth leading to total coalescence of
the cracks 73 :

T=1, + T, T Ts )

In recent years the kinetic theory of fracture has gained wide acceptance. The fundamental principles
of the kinetic theory have received extensive experimental confirmation; for alloys and polymers they have
proved to be so general that deviations from them have been the subject of special investigation. However, the
experiments on which the theory is based relate to the region of large rupture lives (10-3sec and more). Until
recently it was uncertain whether the kinetic theory could be applied on the interval of short rupture lives
(10~® sec or less) typical of explosive fracture, Here it is shown that the region of applicability of the kinetic
theory, as usually formulated, is limited and that on the interval of short rupture lives it should be substan-
tially modified. '

The basic relation of the kinetic theory — the time fracture criterion determining the rupture life 7 [see
(1)] of a solid subjected to the action of a constant tensile stress ¢ — is usually written in the following form:

T = T, €Xp U-;TVO' 2

where k is Boltzmann's constant; T is temperature; T, is the preexponential coefficient, which coincides in
order of magnitude with the period of the thermal vibrations of the atoms (10713107 sec); u is the activation
energy (of the order of the atomic bond energy in the solid).

The factor v is a characteristic of the actual processes preparatory to fracture that take place at the
atomic level. It is usually assumed that v characterizes the most dangerous of the structural defects — the
microstress raisers; the quantity v, which has the dimension of volume, can be interpreted as the product of
the volume of the defect and the stress-concentration factor.

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No, 6, pp. 154-159,
November-December, 1977. Original article submitted March 17, 1977.
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So far the quantities u and yo, and hence the kinetic theory of fracture itself, have not received a com-
pletely acceptable physical interpretation, For example, it is possible to treat (2) as the result of combining
the basic equation of the kinetic theory of flow with the fracture condition corresponding to the reaching of the
critical plastic strain: .

&P = const - exp—:(-- u;Tva ),‘ g >ie?
{(concerning the treatment of (2) see also [2]). However, the pogsible interpretations of (2) are not especially
relevant to what follows,

Under ordinary conditions the quantity v is equal to the volume of 20-500 atoms and for a particular
material remains constant over a very broad range of values of 7. Accordingly, the family of isotherms T=
const obtained from (2) in the plane (o, In 7) takes the form of a fan with rays converging at the point with
coordinates (u/y, In 1) (the pole Il; in Fig. 1). Attempts to use (2) on the interval of small values of T en-
counter chiefly the following difficulty: The abscissas of Il; do not coincide with theoretical strength oy, (u/v)
usually being several times smaller than oy, Clearly, the isotherms should converge at the true pole Il;, For
this it is necessary that at small T the quantity v, which characterizes the slope of the isotherms (d in v/do=
—v/kT), be a decreasing function of . Estimates show that as ¢— 0,y should decrease to approximately
the volume of a single atom. This implies that as o— ¢ the rupture life of the interatomic bond hecomes less
dependent on the state of the surrounding atoms so that in the limit each bond breaks individuzlly, ' sin an
ideal crystal lattice.

It is characteristic of explosive fracture that at very high stresses and short loading pulses it is no
longer possible to take 7 = 74 [as is implicitly assumed when (2) is used under ordinary conditions]. On the
contrary, it may be that 7 ~ (7,+ T3) > 7, Moreover, it is important to consider the relations between these
times and the length of the loading pulse.

The need to take 7, into account can be qualitatively explained as follows. Let Griffith's length be equal
to I. For a potentially unstable (in Griffith's sense) crack to begin to grow, the conditions for elagtic-wave
transfer of the energy released to the edges of the crack must be established in the region around it. The
time required for this can be estimated ag 73> 1 /e (c is the speed of sound). Then for disklike cracks of
radius 1 we have [3] '

o? = naE/2(1 — v)] = naE/2(1 — v)cT,, (3)

where v is Poisson's ratio; o is the work done on forming unit area of the crack; E is Young's modulus. Equa-
tion (3) is the equation of a curve in the plane (g, In 7), represented schematically in Fig. 1 by the curve T'.

The value of @ may vary over a range of several orders, depending on whether fracture is brittle or ductile;
consequently, depending on the test conditions, the curve I' may intersect the isotherm fan anywhere on a broad
interval of T, extending from subnanosecond to microsecond values.

If the loading time is long enough for the investigated process to correspond to points in Fig. 1 lying
above the curve I, then fracture may begin, for example, as a result of several random adjacent microcracks
coalescing into a single crack satisfying Griffith's criterion. Then during time Ty= 1 /c energy is transferred .
to the edges of the crack, which acquires the ability to propagate through homogeneous material irrespective



of the presence of other microcracks along its path, i.e., becomes a main fracture crack. The process ends
with main cracks spreading over the entire cross section and the disintegration of the body into a small num-
ber of large fragments.

At points lying below the curve I" time criterion (3) is known not to be satisfied for 2 homogeneous
medium, i.e., for main cracks. Even if potentially unstable (in Griffith's sense) cracks are present, they
cannot develop into growing main cracks. Accordingly, fracture is possible only if there are very many
independent embryonic microcracks and they coalesce to cover the entire cross section. Since in this case
there is no well-defined critical section, the process takes place uniformly throughout the material. It begins
with the -formation of a pore cloud, similar to a cloud of cavifation bubbles {4], and ends with the disintegration
of the body. In this case, T;, determined from (2), represents the characteristic development time of the
cavitation cloud. If, however, there are few cavitation pores and cavitation does not lead to the disintegration
- of the body, then fracture finally ensues when it becomes possible for main cracks to grow, i.e., when time
criterion (3) is satisfied. In this case criterion (3) is the lower bound for the true time fracture criterion.
Ag distinet from (2), this is an athermal criterion.

In the plane (o, In 7) the slope of the T' curves in the region where they intersect the isotherm fan is
usually one or two orders less than that of the isotherms. Accordingly, there should be a sharp change in the
character of the experimental 7(g) curves in that region, as appears to have been observed in [5] and other
similar studies.

The Bailey criterion [6]
. dt
5 () !
extends relation (2) to the case of time-dependent processes.

In the particular case of the scabbing problem it is also possible to formulate a certain dynamic time
criterion for the process, whose duration is determined not by (2) but by the crack coalescence time. Let part
of the area S of a given section be occupied by cracks. The energy flux co?/E, transported by an acoustic wave,
impinges on the section. Part of the flux, proportional to (1 — 8), passes through the section, while the re~
mainder is divided into a reflected flux, proportional to kS, and a fraction expended on developing the cracks,
proportional to (1 — k)S (k is the reflection coefficient, which, generally speaking, is assumed to be variable).
The crack growth equation takes the form

(1 — kY0¥ E)cSdt = adS.

Integrating this equation, with allowance for the fact that during the fracture time S varies from a certain
initial value S; to 1, we obtain
Ty
o? 28 1, 1
| st —kenar =2,
0

which recalls the empirical criferion
| 5(0'—-0*)"dt=1, (4)

where g%, h, and I are parameters.

The time criteria considered are local fracture criteria. When the fracture conditions of some complete
systems are analyzed, the basic starting relations include the fracture energy balance. This may be written,
for example, in the following approximate form: The total energy of crack formation is equal to the sum of
the potential and a certain fraction of the kinetic energy of the system at fracture. If the kinetic energy is
neglected, the equation can be expressed as a relation formally analogous to Griffith's criterion (3) (attention
was drawn to this possibility in [7, 8]), the difference being that the Griffith's length I is replaced by the
. characteristic dimension of the fragments. To avoid possible misunderstandings, it should be stressed that
the energy balance equation for the system as a whole is not a fracture criterion, but makes it possible to
determine the characteristic dimension (number) of the fragments formed if the fracture criterion ig satisfied.
If it is required to minimize the number of fragments, i.e., reduce them to two, the energy-balance equation
can, of course, be regarded as a condition whose satisfaction is necessary (but not sufficient) for the failure
of the system. However, estimates obtained using only this condition may considerably exaggerate the risk of
failure,
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These observations are not limited to the process of fracture at high stresses. They also apply when~
ever a body can pass from a metastable to a stable state under an external stimulus in either of two ways:
as a result of a transition wave propagating from individual centers or as a result of ahomogeneous volume
transition, the times required for the centers to develop and the transition waves to be propagated through-
out the body being comparable to the duration of action of the external source. In this sense dynamic fracture
should be associated with a number of analogous effects.

An example is offered by the shock initiation of a condensed explosive, when 7 ig to be regarded as the
total reaction time at the given shock temperature T and pressure p. Unfortunately, it is not possible to
trace in detail the analogy between fracture and the initiation of an explosion, since the corresponding equa~
tions [the analogs of (2) and (4)] have so far been adequately studied only in relation to the temperature (but
not pressure) dependence of T. One of the few known results concerning the 7(p) relation is the equation

T = const /p’f, (5)

proposed on the basis of experimental data on the reation time in TNT in the detonation and predetonation
regimes; for loose and compressed TNT n=1 [9] and for cast TNT n=2 [10]. In [11, 12] the "critical energy"
concept is described. According to this concept hot spots develop in the initiated explosive when the condi-
tion (p?r/U) =const (U is the shock-wave velocity) is satisfied for the initiating shock. This condition is
similar in form to (5). Itis worth noting the analogy between Griffith's criterion in form (3) and Eq. (5} at

the particular value n= 2, typical of a mechanically strong explosive. However, it is not clear whether Eq. {5)
is the rate equation of a reaction proceeding uniformly throughout the compressed volume of the explosive or
a criterion of the formation of centers of explosion which, in a mechanically strong explosive, could be
formed, for example, by a network of growing shear cracks.
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