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T I M E  C R I T E R I A  OF E X P L O S I V E  F R A C T U R E  

Yu.  I .  F a d e e n k o  UDC 539.375 

The total f racture  of a solid in a given section presupposes the satisfaction of the following time cri ter ia:  
1) the fracture  preparat ion cr i ter ion (damage accumulation, formation of embryonic cracks); 2) the integral 
crack coalescence cri terion,  based on the nonstationary crack  growth equation. 

In solving specific problems it may prove convenient to consider separately the initial (essentially non- 
stationary) phase of accelerat ion of cracks initially at r es t  and the subsequent phase of quasistationary growth; 
in this case the second of the above-mentioned cr i ter ia  breaks down into two separate time conditions. The 
starting relations may also include Griffith's criterion, i.e.,  a differential crack growth condition requiring 
that the energy- re lease  rate be not less than the work-absorption rate.  Generally speaking, Griffith's cr i ter ion 
should be obtained from the crack growth equation by equating the growth rate to zero. 

Thus, the total f racture  time ~" can be represented as the sum of the fracture  preparation time T 1, the 
duration of the t ransient  process  T 2, and the period of quasistationary growth leading to total coalescence of 
the cracks T 3 : 

= ~ + ~ + ~3- (i) 

In recent  years  the kinetic theory of fracture has gained wide acceptance. The fundamental principles 
of the kinetic theory have received extensive experimental confirmation; for alloys and polymers they have 
proved to be so general  that deviations from them have been the subject of special investigation. However, the 
experiments on which the theory is based relate to the region of large rupture lives (10-3sec and more). Until 
recently it  was uncertain whether the kinetic theory could be applied on the interval of short rupture lives 
(10 -8 sec or less) typical of explosive fracture.  Here it is shown that the region of applicability of the kinetic 
theory,  as usually formulated, is limited and that on the interval of short rupture lives it should be substan- 
tially modified. 

The basic relation of the kinetic theory - the time fracture cr i ter ion determining the rupture life T [see 
(1)] of a solid subjected to the action of a constant tensile s t ress  ~ - is usually written in the following form: 

u- ~o (2) 

where k is Boltzmarm's constant; T is temperature;  T 0 is the preexponential coefficient, which coincides in 
order  of magnitude with the period of the thermal vibrations of the atoms (10-13-10 -12 sec); u is the activation 
energy (of the order  of the atomic bond energy in the solid). 

The factor T is a character is t ic  of the actual  processes  prepara tory  to f racture  that take place at the 
atomic level. I t  is  usually assumed that ,/ character izes  the most dangerous of the structural defects - the 
mic ros t r e s s  ra i se r s ;  the quantity T, which has the dimension of volume, can be interpreted as the product of 
the volume of the defect and the s t ress -concent ra t ion  factor .  

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 6, pp. 154-159, 
November-December,  1977. Original ar t ic le  submitted March 17, 1977. 
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So fa r  the quant i t ies  u and T a ,  and hence the kinet ic  theory  of f r ac tu re  i tself ,  have not rece ived  a c o m -  
p le te ly  acceptab le  phys ica l  in te rpre ta t ion .  Fo r  example ,  it is  poss ib le  to t r e a t  (2) as  the resu l t  of combining 
the bas ic  equation of the kinet ic  theory  of flow with the f r a c tu r e  condition corresponding to the reaching of the 
c r i t i ca l  p las t ic  s t ra in:  

sP = const ~. exp-:(-- u--_y~ 

{concerning the t r e a t m e n t  of (2) see a lso  [2]). However ,  the poss ib le  in te rpre ta t ions  of (2) a r e  not espec ia l ly  
r e l evan t  to what follows. 

Under o rd ina ry  conditions the quantity T is  equal to the volume of 20-500 a toms  and for  a pa r t i cu la r  
m a t e r i a l  r e m a i n s  constant  ove r  a v e r y  broad  range  of va lues  of T. Accordingly,  the fami ly  of i so the rms  T = 
const  obtained f r o m  (2) in the plane (a,  In 7) t akes  the f o r m  of a fan with r a y s  converging a t  the point with 
coordinates  (u/'T, In ~'o) (the pole II 0 in Fig. 1). At tempts  to use  (2) on the in te rva l  of smal l  va lues  of 7 en-  
counter  chiefly the following difficulty: The a b s c i s s a s  of II o do not coincide with theore t ica l  s t rength at ,  (u/T) 
usual ly  being s e v e r a l  t i m e s  s m a l l e r  than a t. Clear ly ,  the i s o t h e r m s  should converge  a t  the t rue  pole H 1. For  
this i t  i s  n e c e s s a r y  that  a t  sma l l  7 the quantity T,  which c h a r a c t e r i z e s  the slope of the i s o t h e r m s  (d in ~'/da= 
- 7 / k T ) ,  be a dec rea s ing  function of a.  E s t i m a t e s  show that  as a ~  a t, N should d e c r e a s e  to approx imate ly  
the volume of a single a tom.  This  impl i e s  that  as  a--" a t the rup tu re  l ife of the i n t e r a tomic  bond becomes  less  
dependent on the s tate  of the surrounding a toms  so that  in the l imi t  each bond b reaks  individually, s in an 
ideal  c r y s t a l  latt ice~ 

I t  i s  c h a r a c t e r i s t i c  of explosive f r a c t u r e  that  at  v e r y  high s t r e s s e s  and shor t  loading pulses  i t  is no 
longer  poss ib l e  to take 7 ~- 71 [as is impl ic i t ly  a s sumed  when (2) is  used  under o rd ina ry  conditions].  On the 
con t ra ry ,  i t  m a y  be that  7 ~ (7z+ 73)>> T 1. Moreove r ,  it i s  impor t an t  to consider  the r e l a t ions  between these 
l imes  and the length of the loading pulse .  

The need to take 72 into account  can be qual i ta t ively explained as  follows. Let  Gr i f f i th ' s  length be equal  
to l. F o r  a potent ia l ly  uns table  (in Gr i f f i th ' s  sense)  c rack  to begin to grow, the conditions for  e l a s t i c -wave  
t r a n s f e r  of  the ene rgy  r e l e a s e d  to the edges  of the c rack  m u s t  be es tab l i shed  in the region around it. The 
t ime  r equ i red  for  this can be e s t ima ted  a s  7z~ l / c  (c i s  the speed of sound). Then for  diskl ike c r a c k s  of 
radius  1 we have [3] 

a 2 = mzE/2(l - -  'v2)l ---- ~aE/2(i --  v'2)c'~2, (3) 

where  v is  P o i s s o n ' s  rat io;  c~ is  the work done on forming  unit a r e a  of the crack;  E is  Young's  modulus.  Equa-  
t ion (3) is the equation of a curve  in the plane (a, In 7), r e p r e s e n t e d  schemat ica l ly  in Fig. ! by the curve  F .  
The value of a m a y  v a r y  over  a range  of s e v e r a l  o r d e r s ,  depending on whether  f r ac tu re  is  br i t t le  or  ductile;  
consequent ly,  depending on the t e s t  conditions, the curve  F m a y  in t e r sec t  the i s o t h e r m  fan anywhere on a broad 
in te rva l  of T, extending f r o m  subnanosecond to mic rosecond  va lues .  

I f  the loading t ime  is  long enough for  the inves t iga ted  p r o c e s s  to co r respond  to points in Fig. 1 lying 
above the curve  F, then f r a c t u r e  may  begin, fo r  example ,  as  a r e s u l t  of s eve ra l  r andom adjacent  m i c r o c r a c k s  
coalesc ing  into a single c r a c k  sat is fying Gr i f f i th ' s  c r i t e r ion .  Then during t ime  72~ l /c ene rgy  is  t r a n s f e r r e d  
to the edges  of the c rack ,  which acqu i res  the abil i ty to propagate  through homogeneous  m a t e r i a l  i r r e s p e c t i v e  
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of the presence of other microcracks  along its path, i.e., becomes a main fracture crack. The process ends 
with main cracks spreading over the entire cross  section and the disintegration of the body into a small num- 
ber of large fragments.  

At points lying below the curve r t ime cri ter ion (3) is known not to be satisfied for a homogeneous 
medium, i.e.,  for main cracks. Even if potentially unstable (in Griffith's sense) cracks are  present,  they 
cannot develop into growing main cracks.  Accordingly, fracture is possible only if  there are  very  many 
independent embryonic microeracks  and they coalesce to cover the enlire cross  section. Since in this case 
there  i s n o  well-defined crit ical section, the process  takes place uniformly throughout the material .  It begins 
with the formation of a pore cloud, s imi lar  to a cloud of cavitation bubbles [4], and ends with the disintegration 
of the body. In this case, TI, determined from (2), represents  the character is t ic  development time of the 
cavitation cloud. If, however, there  are  few cavitation pores and cavitation does not lead to the disintegration 
of the body, then fracture  finally ensues when it becomes possible for main cracks to grow, i.e.,  when time 
cri ter ion (3) is  satisfied. In this case cr i ter ion (3) is the lower bound for the true time fracture criterion. 
As distinct f rom (2), this is an athermal cr i ter ion.  

In the plane (~, In T) the slope of the r curves in the region where they intersect  the isotherm fan is 
usually one or two orders  less than that of the isotherms. Accordingly, there should be a sharp change in the 
character  of the experimental r(a) curves in that region, as appears to have been observed in [5] and other 
similar studies. 

The Bailey cri ter ion [6] 

extends relation (2) to the case of time-dependent processes .  

In the part icular  case of the scabbing problem it is also possible to formulate a certain dynamic time 
cr i ter ion for the process,  whose duration is determined not by (2) but by the crack coalescence time. Let part  
of the a rea  S of a given section be occupied by cracks.  The energy flux cq2/E, transported by an acoustic wave, 
impinges on the section. Par t  of the flux, proportional to (1 - S), passes through the section, while the r e -  
mainder is divided into a reflected flux, proportional to kS, and a fraction expended on developing the cracks, 
proportional to (1 - k)S (k is the reflection coefficient, which, generally speaking, is assumed to be variable). 
The crack growth equation takes the form 

(l --k)(~*-/E)cSdt ~ a d S .  

Integrating this equation, with allowance for the fact that during the f racture  time S var ies  f rom a certain 
initial value S O to 1, we obtain 

as 2E in ft.1_ ~-d~[l--k(t)ldt=-'7" s o ,  
0 

which recal ls  the empirical  cr i ter ion 

J" (a " o , ) -  dt = I, (4) 

whore q , ,  n, and I a re  parameters .  

The t ime c r i t e r ia  considered are local fracture cr i ter ia .  When the fracture conditions of some complete 
systems are  analyzed, the basic starting relations include the fracture energy balance. This may be written, 
for example, in the following approximate form: The total energy of crack formation is equal to the sum of 
the potential and a certain fraction of the kinetic energy of the system at fracture.  If the kinetic energy is 
neglected, the equation can be expressed as a relation formally analogous to Griffithts cr i ter ion (3) (attention 
was drawn to this possibility in [7, 8]), the difference being that the Griffithts length l is replaced by the 
cha rac t e r i s t i c  dimension of  the fragments.  To avoid possible misunderstandings, it should be s t ressed that 
the energy balance equation for the system as a whole is not a fracture cri terion,  but makes i t  possible to 
determine the character is t ic  dimension (number) of the fragments formed if the f racture  cri ter ion is satisfied. 
If it  is  required to minimize the number of fragments, i .e. ,  reduce them to two, the energy-balance equation 
can, of course,  be regarded as a condition whose satisfaction is necessary  (but not sufficient) for the failure 
of the system. However, est imates  obtained using only this condition may considerably exaggerate the r isk of 
failure. 
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These observations are  not limited to the process  of f racture  at high s t resses .  They also apply when- 
ever  a body can pass from a metastable to a stable state under an external stimulus in either of two ways: 
as a resul t  of a transit ion wave propagating from individual centers or as a result  of ahomogeneous volume 
transition, the t imes required for the centers to develop and the transition waves to be propagated through- 
out the body being comparable to the duration of action of the external source. In this sense dynamic fracture 
should be associated with a number of analogous effects. 

An example is offered by the shock initiation of a condensed explosive, when r is to be regarded as the 
total reaction t ime at the given shock temperature T and pressure  p. Unfortunately, it  is not possible to 
t race in detail the analogy between frach~re and the initiation of an explosion, since the corresponding equa- 
tions [the analogs of (2) and (4)] have so far been adequately studied only in relation to the temperature (but 
not pressure)  dependence of ~'. One of the few known results concerning the ~'(p) relation is the equation 

----- const/p", (5) 

proposed on the basis of experimental data on the reation time in TNT in the detonation and predetenation 
regimes; for loose and compressed TNT n = l  [9] and for cast  TNT n->2 [10]. In [11, 12] the "cri t ical  energy" 
concept is described. According to this concept hot spots develop in the initiated explosive when the condi- 
tion (p2T/U) =const (U is the shock-wave velocity) is satisfied for the initiating shock. This condition is 
similar in form to (5). It is  worth noting the analogy between Griffith's cri terion in form (3) and Eq. (5) at 
the part icular  value n= 2, typical of a mechanically strong explosive. However, it is not clear whether Eq. (5) 
is the rate equation of a reaction proceeding uniformly throughout the compressed volume of the explosive or 
a cr i ter ion of the formation of centers of explosion which, in a mechanically strong explosive s could be 
formed, for  example, by a network of growing shear cracks. 
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